88 优惠券
2020年3月1日到期。满 200 元可用
立即使用
立即使用
  • 参会报名
  • 会议内容
  • 会议日程
  • 会议嘉宾
  • 参会指南
  • 手机下单 手机扫码下单

首页 > 商务会议 > IT互联网会议 > 2019人工智能-模式识别(12月北京班) 更新时间:2019-12-13T17:51:52

2019人工智能-模式识别(12月北京班)
收藏3人
分享到
官方合作

2019人工智能-模式识别(12月北京班) 已截止报名

会议时间: 2019-12-19 09:00至 2019-12-20 18:00结束

会议地点: 北京  详细地址会前通知  None 周边酒店预订

主办单位: 中科院计算所培训中心

行业热销热门关注看了又看 换一换

        会议内容

        会议介绍 主办方介绍


        2019人工智能-模式识别(12月北京班)

        2019人工智能-模式识别(12月北京班)宣传图

        课程时间:12月19日-12月20日

        主讲老师:司老师

        课程地点:北京

        模式识别是计算机科学和人工智能中非常重要的一个研究领域,如图像分析与处理、计算机视觉、人脸识别、指纹识别、语音识别、自然语言理解、声音分类、通信、数据挖掘、智能机器人等。

        课程介绍

        模式识别(Pattern Recognition, PR)是指对表征事物或现象的各种形式的(数值的、文字的和逻辑关系的)信息进行处理和分析,以对事物或现象进行描述、辨认、分类和解释的过程,是信息科学和人工智能的重要组成部分。模式识别是计算机科学和人工智能中非常重要的一个研究领域,模式识别不但在计算机科学的众多领域中大显身手,而且成为一些交叉学科的重要支撑技术,其应用遍及人工智能的各个领域,如图像分析与处理、计算机视觉、人脸识别、指纹识别、语音识别、自然语言理解、声音分类、通信、数据挖掘、智能机器人等。随着人工智能技术的快速发展,模式识别方面的人才成为国家急需的高层次技术人才。

        培训结束,颁发中科院计算所职业培训中心“人工智能-模式识别”结业证书。


        本课程有企业内训形式,授课老师、课程内容、教学方式均依据企业的培训需求灵活设置。

        本网站内容包括并不限于课程介绍、课程大纲、上课照片、老师介绍等等资料及信息,未经允许不得抄袭和转载。

        适用人群

        培训对象

        高级程序员、资深开发人员、人工智能工程师、图像设计人员、机器学习工程师、程序员、模式识别工程师。

        学员基础

        1、对IT系统设计有一定的理论与实践经验。

        2、对模式识别有一定的兴趣。

        查看更多

        中科院计算所培训中心 中科院计算所培训中心

        中科院计算所培训中心是权威IT精英培训机构,专注中高端技术人才培养。采用高端公开课、企业内训形式教授大数据,军方软件,软件需求分析,项目管理等高端课程。

        会议日程 (最终日程以会议现场为准)


        课程大纲

        第一讲 模式识别简介

        1.1 什么是模式识别

        1.2 为什么要模式识别

        1.3 怎样来进行模式识别

        1.4 模式识别的现实案例举例

        第二讲 贝叶斯决策

        2.1 最小错误率贝叶斯决策

        2.2 最小风险错误率贝叶斯决策

        2.3 ROC曲线

        2.4 贝叶斯决策在语音识别中的应用案例

        第三讲 朴素贝叶斯决策

        3.1为什么要引入朴素贝叶斯决策

        3.2 如何进行朴素贝叶斯决策

        3.3 朴素贝叶斯在文本识别中的应用案例

        第四讲 线性分类器

        4.1 线性分类器是什么

        4.2 Fisher线性判别的动机

        4.3 Fisher线性判别的内涵是什么

        4.4 Fisher线性判别在人脸检测中的应用案例

        第五讲 人工神经网络

        5.1 人工神经网络的设计动机是什么

        5.2 单个神经元的功能

        5.3人工神经网络的优化以及误差逆传播(BP)算法

        5.4人工神经网络中需要注意的问题

        5.5 人工神经网络在表情识别、流量预测中的应用案例

        第六讲 最优分类面和支持向量机(SVM)

        6.1 什么是最优分类面

        6.2 SVM的本质是什么

        6.3 SVM线性不可分时怎么办

        6.4 SVM中核函数如何选择

        6.5 SVM在车牌识别中的应用案例

        第七讲 非线性分类器

        7.1 什么时候使用非线性分类器

        7.2 如何设计非线性分类器

        7.3 非线性分类器在光学字符识别中的应用案例

        第八讲 近邻法

        8.1 近邻法的思想是什么

        8.2 近邻法的缺点以及改进方案

        8.3 近邻法中的过学习问题及解决方案

        8.4 近邻法在相亲网站中的应用案例

        第九讲 决策树

        9.1 什么是非数值特征

        9.2 为什么要引入决策树

        9.3 如何设计决策树

        9.4 如何构造随机森林

        9.5 决策树在医疗系统中的应用案例

        第十讲 Boosting

        10.1 什么是Boosting算法

        10.2 为什么要Boosting

        10.3 如何Boosting

        10.4 介绍Boosting算法典型代表Adaboost

        10.5 Adaboost在人脸检测中的应用案例

        第十一讲 特征选择

        11.1 为什么要特征提取和特征选择

        11.2 特征选择的最优算法

        11.3 特征选择的次优算法

        11.4 特征选择的遗传算法

        11.5 特征选择在优化系统中的应用

        第十二讲 特征提取

        12.1 特征提取的一般性方法

        12.2 主成分分析

        12.3 主成分分析在扭曲指纹识别中的应用案例

        12.4 K-L变换

        12.5 K-L变换在人脸识别中的应用案例

        第十三讲 非监督学习方法

        13.1 什么是非监督学习?

        13.2 单峰子集法

        13.3 C均值方法

        13.4 模糊C均值方法和改进的模糊C均值方法

        13.5 非监督学习方法在石油勘探中的应用案例

        查看更多

        会议嘉宾


        即将更新,敬请期待

        参会指南

        会议门票


        公开课费用:5900元/人,含参会费,住宿交通自理。

        查看更多

        温馨提示
        酒店与住宿: 为防止极端情况下活动延期或取消,建议“异地客户”与活动家客服确认参会信息后,再安排出行与住宿。
        退款规则: 活动各项资源需提前采购,购票后不支持退款,可以换人参加。

        还有若干场即将举行的 模式识别大会

        猜你喜欢

        部分参会单位

        主办方没有公开参会单位
        活动家_小程序快捷下单

        微信扫一扫
        分享给朋友

        邮件提醒通知

        分享到微信 ×

        打开微信,点击底部的“发现”,
        使用“扫一扫”即可将网页分享至朋友圈。

        录入信息

        请录入信息,方便生成邀请函